Shi Asymmetric Epoxidation Reaction

Reviews:

General Transformation:

It is proposed that the Shi epoxidation proceeds through a dioxirane intermediate and a spiro transition state and that a so-called planar transition state is a main competing pathway. The spiro transition state is believed to be electronically favored as a result of a stabilizing interaction between an oxygen lone pair of the dioxirane with the \(^*\) orbital of the olefin.

Catalyst Conditions:

- Ketone 1 can be readily prepared from D-fructose ($\frac{15}{kg}$) by ketalization (acetone, HClO\(_4\), 0 °C, 53%) and oxidation (PCC, 23 °C, 93%). L-Fructose can be prepared in 3 steps from readily available L-sorbose.
- Ketone 1 can be used catalytically (20–30 mol %).
- Oxone (a commercial mixture of 2:1:1 KHSO\(_5\):KHSO\(_4\):K\(_2\)SO\(_4\)) is used as the stoichiometric oxidant but \(\text{H}_2\text{O}_2/\text{CH}_3\text{CN}\) can also be used (peroxyimidic acid is the proposed oxidant).
- Generally, the optimum pH for dioxirane epoxidation is 7–8. At higher pH, Oxone tends to decompose. However, at pH 7–8 the Shi catalyst decomposes due to competing Baeyer-Villiger reaction. By increasing the pH to 10.5 (by addition of K\(_2\)CO\(_3\)), the amount of ketone used can be reduced to a catalytic amount (30 mol %) and the amount of Oxone can be reduced to a stoichiometric amount (1.5 equiv), suggesting that at this pH the ketone is sufficiently reactive to compete with Oxone decomposition.
- Dimethoxymethane (DMM) and CH\(_3\)CN (2:1 v/v) solvent mixtures generally provide higher ee's.
- Reaction temperatures range from –10 to 20 °C.
- It is proposed that the Shi epoxidation proceeds through a dioxirane intermediate and a spiro transition state and that a so-called planar transition state is a main competing pathway. The spiro transition state is believed to be electronically favored as a result of a stabilizing interaction between an oxygen lone pair of the dioxirane with the \(^*\) orbital of the olefin.

Examples:

1. Effect of smaller R\(_1\) (also known as "T-branch"); phenyl groups can be considered smaller than methyl.

\[
\begin{align*}
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C}
\end{align*}
\]

<table>
<thead>
<tr>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>26% ee</td>
<td>79% ee</td>
<td>81% ee</td>
<td>98% ee</td>
</tr>
</tbody>
</table>

2. Effect of larger R\(_3\) (also: "L-branch").

\[
\begin{align*}
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C}
\end{align*}
\]

<table>
<thead>
<tr>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>76% ee</td>
<td>86% ee</td>
<td>91% ee</td>
<td></td>
</tr>
<tr>
<td>76% ee</td>
<td>97% ee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Comparing the size of R\(_1\) and R\(_3\).

\[
\begin{align*}
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C} \\
{\text{H}_3\text{C}} & \text{O} \text{H}_3\text{C} \quad \text{H}_3\text{C}
\end{align*}
\]

<table>
<thead>
<tr>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>76% ee</td>
<td>97% ee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Catalytic Cycle:

Higher ee's are observed with smaller R\(_1\) and larger R\(_3\) substituents.

Soojin Kwon
Monooxidation of conjugated dienes favors the more electron-rich or less sterically hindered olefin. The amount of catalyst used must be properly controlled (0.2–0.3 equiv) to prevent bis-epoxidation. Vinyl silanes and allylic silyl ethers are deactivated towards epoxidation (attributed to steric and inductive deactivation, respectively).

Epoxidation of enynes occurs selectively at the C–C double bond.

1,1-Disubstituted epoxides can be synthesized enantioselectively by Shi epoxidation of trisubstituted vinyl silanes followed by TBAF-mediated desilylation.
A modified catalyst is useful for epoxidation of cis-disubstituted olefins and styrenes.

\[
\text{Ph} \stackrel{\text{Oxone, K}_2\text{CO}_3, \text{DME, DMM}}{\longrightarrow} \text{Ph}
\]

82%, 91% ee

The enantiomeric excess is generally high for cyclic olefins and for acyclic olefins conjugated with an alkynyl or aromatic group.

In both cases, it is proposed that the \(\alpha \)-substituent of the substrate prefers to be proximal to the spiro oxazolidinone.

Enol esters can be used as substrates for the preparation of \(\alpha \)-hydroxyketones in either enantiomeric form.

\[
\text{Ph} = \text{CH}_3 \quad \text{Oxone, K}_2\text{CO}_3, \text{DME, DMM} \quad \rightarrow \quad \text{Ph} = \text{CH}_3
\]

66%, 91% ee

91% ee

94% ee

195 °C, 0.5 h

92%

98% ee

Kinetic resolution of racemic 1,3- and 1,6-disubstituted cyclohexenes can provide optically enriched allylic silyl ethers.

\[
\text{OTMS} \quad \xrightarrow{35 \text{ mol} \% 1} \quad \text{OTMS}
\]

49% conversion

96% ee

trans:cis >20:1

95% ee trans

\[
\text{OTBS} \quad \xrightarrow{35 \text{ mol} \% 1} \quad \text{OTBS}
\]

70% conversion

99% ee

trans:cis 4:1

81% ee trans

The original Shi catalyst decomposes (via the Baeyer-Villiger pathway) faster than it reacts with electron-deficient \(\alpha,\beta \)-unsaturated esters. A second-generation catalyst, incorporating electron-withdrawing acetate groups, slows the Baeyer-Villiger decomposition.

\[
\text{Ph CO}_2\text{Et} \xrightarrow{\text{73\%, 96\% ee}} \text{Ph CO}_2\text{Et}
\]

Applications in Synthesis:

Glabrescol:

\[
\text{squalene} \xrightarrow{\text{asymmetric dihydroxylation}} \text{Glabrescol} \quad 73\%
\]

\[
\text{H}_3\text{C} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{HO} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{88\% ee}
\]

1. Oxone, DMM, \(\text{CH}_3\text{CN}, \text{H}_2\text{O}, \text{pH} \, 10.5, \, 0 \, ^\circ \text{C}, \, 1.5 \, \text{h}
\]

\[
\text{CSA, toluene, 0 \, ^\circ \text{C}, 1 \, \text{h}} \quad 31\% \, (2 \, \text{steps})
\]

originally proposed structure of Glabrescol

Cryptophycin 52:

The Shi epoxidation system provided the desired epoxide in a 6:1 diastereomeric ratio, while other epoxidation methods never exceeded a 2:1 ratio.

\[
\text{H}_3\text{C} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{HO} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{88\% ee}
\]

\[
\text{H}_3\text{C} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{HO} - \text{CH}_3 - \text{CH}_3
\]

\[
\text{79\%}
\]

Soojin Kwon
Octalactin A:

Bluet, G.; Campagne, J.-M. *Synlett* **2000**, *1*, 221–222.

Thrysiferol:

Post epoxidation, only one bromohydrin diastereomer cyclized to the bromotetrahydropyran. The unreactive diastereomer was separated from the cyclization product and isolated in 30% yield.

Soojin Kwon