A Practical, Component-Based Synthetic Route to Methylthiolincosamine Permitting Facile Northern-Half Diversification of Lincosamide Antibiotics

Matthew J. Mitcheltree, Jack W. Stevenson, Amarnath Pisipati, and Andrew G. Myers*

Cite This: J. Am. Chem. Soc. 2021, 143, 6829−6835

ABSTRACT: The development of a flexible, component-based synthetic route to the amino sugar fragment of the lincosamide antibiotics is described. This route hinges on the application and extension of nitroaldol chemistry to forge strategic bonds within complex amino sugar targets and employs a glycal epoxide as a versatile glycosyl donor for the installation of anomeric groups. Through building-block exchange and late-stage functionalization, this route affords access to a host of rationally designed lincosamides otherwise inaccessible by semisynthesis and underpins a platform for the discovery of new lincosamide antibiotics.

The lincosamide antibiotics have been used to treat staphylococcal and streptococcal infections in humans for more than 50 years, but widespread bacterial resistance and safety concerns (specifically, a risk of C. difficile infection) have diminished their use in patients. Methylthiolincosamine (MTL, 1) is the northern-half component of the prototypical lincosamide, lincomycin (2), for which the thiogalactopyranose plays an essential role in binding to the bacterial ribosome, the lincosamides’ cellular target. X-ray co-crystallography has shown that the pyranose hydroxyl groups of MTL form an extensive hydrogen-bond network with the neck of the peptide-exit tunnel, including with adenosine 2058, a key residue whose mutation or post-transcriptional modification confers resistance to lincosamides, macrolides, and streptogramin B antibiotics, a multidrug resistance phenotype referred to as MLSβ. Early semisynthetic modifications to the lincosamides support the idea that the 2,3,4-triol pharmaphore is indispensable, as deoxygenation, O-methylation, epimerization, and other modifications abolish activity. On the other hand, modifications of positions C1 and C7 are tolerated, a finding perhaps presaged by the naturally occurring lincosamide antibiotic celesticetin (3, reported in 1955).

Although no new lincosamide has been advanced since the approval of clindamycin (4) in 1970, this is not for lack of effort. Vicuron scientists discovered beneficial modifications of C7 using both semisynthesis and de novo construction from a carbohydrate precursor employing an extant method. In addition, they discovered that azepane replacement of the aminoacyl portion of the molecule (5) greatly improved the spectrum and potency of antibacterial activity. Meiji-Seika researchers have reported that semisynthetic modification of C7 with a biarylthio substituent (as well as aminoacyl modification, see 6) imparted potency against multidrug-resistant strains. These and other precedents encouraged us to attempt to develop a component-based, more streamlined route to MTL that would permit structural modification of positions 1 and 7. Here we report the successful realization of such a route.

Our original retrosynthetic analysis targeted the protected glycal 7 as a key subgoal, imagining in the forward direction selective epoxidation of that intermediate from the bottom face (as drawn) followed by stereoselective addition of various nucleophiles to C1 (Scheme 1), following on earlier success with a related transformation. In turn, we reasoned that glycal 7 might be assembled by transition metal-catalyzed cycloisomerization of a linear alkyne precursor, such as one formed by regioselective opening of propargyl epoxide 8 with a suitably protected oxygen nucleophile. The alkyne epoxide 8
by design also comprises a β-hydroxy nitro function, permitting its convergent assembly by a proposed diastereoselective Henry reaction of components 9, an epoxy aldehyde, and the nitro ether 10. Varying the latter component, particularly through inclusion of an easily varied element such as an alcohol, alkene, or masked aldehyde, would permit facile diversification of C7.

Building blocks 9 and 10 were each prepared in multigram amounts by known sequences of 4–5 steps from starting materials available in bulk. The allylic alcohol precursor 12 was prepared by formylation of tri-isopropylsilylethylene (11), Horner–Wadsworth–Emmons olefination, then ester reduction. Sharpless epoxidation followed by Dess–Martin oxidation then furnished epoxy aldehyde (35,4R)-9 (90% ee, determined by Mosher analysis of the epoxy alcohol precursor). The nitro ether 10 was prepared from enantiopure nitro acetate 15 by acetate hydrolysis and O-benzylolation under acidic conditions, then recrystallization from ethyl acetate–hexane (17.6 g, 66% yield from enantiopure 15). Spectroscopic data and melting-point determination of the resulting white solid matched literature reports for the nitro ether 10. The product was found to be optically pure (>99% ee) by chiral HPLC analysis.

With building blocks 9 and 10 in hand, we investigated their proposed coupling to form nitroaldox adduct 8 (Scheme 2). Under a variety of conditions commonly employed for such couplings (e.g., potassium tert-butoxide–tetrahydrofuran, potassium carbonate–methanol, potassium fluoride–isopropanol, silica gel), we observed complex mixtures of diastereomeric nitroaldox addition products, the separation and characterization of which were complicated by their apparent instability toward retro-Henry fragmentation on silica gel. However, when we attempted coupling of 9 and 10 using the chiral ligand 16 and copper(II) bromide, we observed the formation of a notably polar byproduct, which was isolated in 30% yield and proved to be isomeric with the desired Henry adduct. X-ray analysis of this crystalline material revealed it to be the isoxazoline N-oxide 17, arising from the desired Henry adduct (8) by nitroane formation and consequent cyclization. Such cyclizations involving ethyl nitroacetate have been documented by Righi and Jørgensen.

While unanticipated, isoxazoline N-oxide 17 presented several beneficial features in the context of our synthesis goals. These included the stability of the product toward silica gel (in contrast to 8 itself), the potential use of cyclic stereocenters to bias the subsequent reduction of C6, and the concise internal protection of the functionality at positions C4 and C6 in the form of a N−O linkage. We wondered whether the 3,4,5-stereotriad of MTL might be established by a similar chemical transformation, similar but not identical because our original retrosynthetic analysis anticipated inversion at C3 rather than C4 (Scheme 1), as occurs in the formation of 17. In theory, this could be rectified by using the enantiomer of the epoxy aldehyde 9, which we prepared by a two-step route analogous to the one used to provide the (35,4R) isomer, with some changes to address scalability. When we prepared (35,4S)-9 and attempted coupling with 10 in the presence of cesium carbonate (EtOH, 23 °C), we obtained after chromatography the desired cycloadduct 18 in 32% yield (minor) and, separately, the C5 epimeric cycloadduct in 50% yield (major, not depicted, dr 45:55).

From a screen examining the ability of various chiral catalysts to steer the diastereoselectivity of the coupling of (35,4S)-9 and 10 toward the desired diastereoisomer 18, we found that a copper(II) system employing cyclohexanediamine ligand 20 afforded the initial nitroaldol product 21 with a C5 dr of ~95:5 (1H NMR analysis; though inconsequential, the distribution of indeterminate C6 epimers was estimated to be ~85:15). Following disappearance of the limiting epoxyaldehyde component, triethylamine was introduced, and the mixture was warmed to promote smooth cyclization of 21 to isoxazoline N-oxide 18 (Scheme 3). Thus, this optimized coupling was scaled to produce 16.4 g of 18 in 88% isolated yield in one operation. cis-Desilylation of this product with tetra-n-butyrammonium fluoride, followed by selective O-protection of the sterically less encumbered propargyl alcohol provided silyl ethers 22 (a = TBDPS, b = TIPS) in good yield; the crystallinity of 22b permitted unambiguous assignment of all stereochemistry by single-crystal X-ray diffraction.

With suitably protected alkenyln 22 in hand, we then sought to identify conditions for transition metal-catalyzed cyclization to form the corresponding glycal. We observed that both the isoxazoline N-oxide 22a and its reduced counterpart 23 (formed in 70% yield upon warming 22a with trimethylphosphite) were unreactive toward tungsten(VI) and ruthenium(II) catalysts for glycal formation, leading us to speculate that the polar isoxazoline N-oxide and isoxazoline functional groups might serve as catalyst poisons. We elected instead to reduce the...
isoxazoline 23, choosing conditions conducive toward internal hydroxyl-directed reduction. Thus, exposure of 23 to sodium triacetoxyborohydride in a mixed solvent system comprising trifluoroacetic acid and acetonitrile led to smooth reduction of the \(\text{C} \equiv \text{N} \) double bond to afford only a single diastereoisomer. Protection of the resulting isoxazolidine as its 2-(trimethylsilyl)ethoxycarbonyl (Teoc) derivative then furnished 24, which proved to be an excellent substrate for tungsten(0)-catalyzed glycal formation using conditions reported by McDonald and co-workers. We found that this sequence of transformations was readily scaled, providing up to 3.5 g of glycal 25 in a single run.

The remaining steps of our original retrosynthetic plan proceeded as envisioned, permitting the synthesis of MTL by a straightforward sequence of epoxidation, thioglycosylation, and deprotection. Epoxidation of glycal 25 with dimethyldioxirane proceeded with perfect selectivity for the convex face, providing the epoxide 26 in quantitative yield on scales up to 1.5 g. cis-\(\alpha \)-Thioglycosylation was then achieved using trimethyl(methylthio) silane as glycosyl acceptor and trimethyl(trifluoromethanesulfonate) as a Lewis-acid promoter, producing 27 in 86% yield and 91:9 dr when tetrahydrofuran was used as solvent. Finally, O-desilylation, dissolving-metal debenzylation, and \(\text{N} \)−\(\text{O} \) bond cleavage with zinc in acetic acid (the latter two steps may be performed in the same flask) furnished fully synthetic MTL (1) in 82% overall yield from 27.

Epoxide 26 provided a means by which to install allyl groups at the C1 position with high \(\alpha \)-selectivity. Treatment of 26 with vinylzinc trifluorooacetate, an amphiphilic reagent that putatively serves to activate the glycosyl donor while directing nucleophilic attack to the same face of the nascent oxocarbenium ion (pictured), provided the desired cis-\(\alpha \)-C-glycoside in 80% yield as a single diastereomer (Scheme 3). The resulting \(\alpha \)-vinylated product 28 was readily transformed into a number of diverse MTL analogs (Scheme 4). For example, isosteric replacement of the methylthio group within MTL was possible through desilylation and hydrogenation of 28, providing the \(\alpha \)-ethyl MTL analog 29, while cyclopropanation provided access to the \(\alpha \)-cyclopropyl analog 30. Sequential exposure of a methanolic solution of 28 to ozone gas and sodium borohydride produced the corresponding \(\alpha \)-hydroxymethyl analog, which could be selectively activated with \(p \)-toluenesulfonyl chloride. Desilylation and hydrogenation as before then furnished 1-(tosyloxy)methyl lincosamine analog 31, whose structure was established unambiguously through single-crystal X-ray diffractometry. The latter compound served as a valuable precursor to diverse lincosamides bearing non-natural substitution at the C1 position.

Amino sugar 29 was transformed into fully synthetic lincosamide analog 37 following established paths (Scheme 5). Subjectioning 32, the N-trifluoroacetamide of 29, to 6 equiv of 1-(chloromethylene)piperidinium chloride (33) resulted in
regioselective 7-deoxychlorination; careful addition of sodium hydroxide then effected hydrolysis of pyranose formate esters and the nitrogen protecting group. Convergent coupling to the aminoacyl component discovered by Vicuron scientists was performed next, followed by N-Boc removal and diastereoselective azepane hydrogenation to furnish azepanamide in 50% yield from 34.

In order to explore C7 substitution effects within the lincosamides, we substituted 2-nitroethanol for the nitroether in the key nitroaldol coupling, obtaining isoxazoline in 45% yield on multigram scale (Scheme 6). The diastereoselectivity of the latter addition was modest (62:38 dr in favor of 39) but serviceable; efforts to screen chiral catalysts as with 10 afforded no practical advantage in this case. Elaboration of 39 to aminotetrol 40 was achieved as in the synthesis of MTL and proceeded in 21% yield over the 9 steps. Finally, in this illustration we chose to couple with trans-4-n-propylhygric acid to produce 8-norlincomycin (42) in 74% yield. Selective functionalization of the primary alcohol group within 42 was possible, permitting the synthesis of 15 additional propylhygramides bearing non-natural substitution to C7.

In this fashion and through a combination of building-block exchange and late-stage derivatization, a library of 41 lincosamides bearing diverse substitutions at positions 1 and 7 was prepared for evaluation against a panel of pathogenic...
bacteria (Table 1). Of these analogs, 18 displayed minimum inhibitory concentrations (MICs) of ≤4 μg/mL against the standard *Streptococcus pneumoniae* strain ATCC 49619, a Gram-positive isolate susceptible toward canonical lincosamides such as lincomycin and clindamycin (MICs = 0.5 and 0.125 μg/mL, respectively). Analysis of structure–activity relationships of a selection of representative lincosamides illuminates a subtle reliance on the C1 thiomethyl substituent of S on activity, for instance, as nearly isosteric replacement with ethyl (37) or chloromethyl (43) groups produced analogs with diminished activities, particularly against Gram-negative and MLSB Gram-positive strains. Similarly, C7 methylation (as in lincomycin [2]) proved critically beneficial to antimicrobial activity, as 8-norlincomycin (42), 7-azidolincomycin (47), and biaryl sulfoxide 49 each displayed significantly greater MICs in all tested organisms relative to their methylated counterparts (for a complete listing of lincosamides synthesized by the routes described here, with corresponding MIC data, see ref 5). Together these results suggest particular electronic requirements at the C1 position and conformationally rigidifying cations would have been difficult or impossible to achieve using semisynthesis. The route features two-component assembly via a nitroaldol cyclization reaction with full diastereoselection and a versatile glycal epoxide intermediate. With concurrent development of similarly flexible routes to novel southern-half residues,37,38 this work provides the basis for broad discovery within this underexplored antibiotic class.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c03536.

Detailed experimental procedures and characterization data for all new compounds (PDF)

Accession Codes

CCDC 2072279–2072281 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Andrew G. Myers — Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0001-9602-6915; Email: myers@chemistry.harvard.edu

Authors

Matthew J. Mitcheltree — Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0003-3774-628X

Jack W. Stevenson — Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0001-7261-4958

Amaanth Pisipati — Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/jacs.1c03536

Notes

The authors declare the following competing financial interest(s): A.G.M. and M.J.M. have filed an international patent application, WO/2019/032956, Lincosamide Antibiotics and Uses Thereof.

ACKNOWLEDGMENTS

This work was generously supported by the Blavatnik Biomedical Accelerator Program at Harvard University and by the LEO Foundation (grant LF180006). M.J.M. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144152. J.W.S. thanks the Harvard College Research Program for summer undergraduate research funding. The authors thank Dr. Shao-Liang Zheng for conducting X-ray crystallographic analyses, Dr. William Weiss (University of North Texas Health Science Center) and Micromyx L.L.C. for performing antimicrobial screening, and Drs. Ziyang Zhang, Fan Liu, Thomas Dougherty, and Su Chiang for their valuable insights contributed during the execution of this work.

REFERENCES

(b) Wakiyama, Y.; Kumura, K.; Umemura, E.; Masaki, S.; Ueda, K.; Yoshida, T.; Ajito, K. Synthesis of novel lincomycin derivatives and diastereoselective syntheses of new aminoglycoside antibiotics, and diastereoselective asymmetric epoxidation reaction (40 mol % from 128 mol %) and by substituting Parikh—Doering oxidation for Dess–Martin, we could prepare up to 12 g of (3R,4S)-9 in a single batch (57% yield over 2 steps, 88% ee). See Supporting Information for details.

(23) Although the melting point of 1,4-dioxane is 12 °C, freezing-point depression prevents the reaction mixture from solidifying.

(24) The overall diastereoselectivity of this transformation was determined by 1H NMR analysis of the reaction mixture at completion, revealing by integration of epimeric CS methine resonances a dr of 98:2.

(31) Notably, the diastereoselectivity of this transformation was highly dependent on the solvent and is consistent with a double-displacement model involving ethereal solvent participation. For instance, when tert-butyl methyl ether was used as solvent, \sim90:10 α/ β selectivity was observed, with the isolation of the β-O-methyl glycoside byproduct, presumably arising through loss of tert-butyl cation from an intermediate sugar–solvent oxonium adduct.

(32) Xue, S.; Han, K.-Z.; He, L.; Guo, Q.-X. Zinc-Mediated Synthesis of α-C-Glycosides from 1,2-Anhydroglycosides. Synlett 2003, 870–872.

(33) When attempted using less electron-withdrawing groups such as N-Boc-protected azapenamides, deoxychlorination was not observed. Instead, participation of the C6-amide carbonyl group gave rise to undesired oxazoline cyclization products.

(36) Polybasic analogs such as 46, 49, and 50 were designed in order to probe the effects of net charge on Gram-negative activity. See: Myers, A. G.; Clark, R. B. Discovery of Macrolide Antibiotics Effective against Multi-Drug Resistant Gram-Negative Pathogens. Acc. Chem. Res. 2021, 54, 1635–1645.
