Dynamic charge-density correlation function in weakly charged polyampholyte globules

Date Published:

2001

Abstract:

We study solutions of statistically neutral polyampholyte chains containing a large fraction of neutral monomers. It is known that such solutions phase separate at very low concentrations, even if the quality of the solvent with respect to the neutral monomers is good. The precipitate is semidilute if the chains are weakly charged. This paper considers θ solvents and good solvents, and we calculate the dynamic charge density correlation function g(k,t) in the precipitate, using the quadratic approximation to the Martin-Siggia-Rose generating functional. It is convenient to express the results in terms of dimensionless space and time variables. Let ξ be the blob size, and let τ be the characteristic time scale at the blob level. Define the dimensionless wave vector q=ξk, and the dimensionless time s=t/τ. In the regime q<1, corresponding to length scales larger than the blob size, and 10.1, where entanglements are unimportant.

Website